

FEMA Task Order Number HSFE05-14-J-0037 STARR Project Number 400000254 Woolpert Project #74908

FEMA STARR Ashland County Wisconsin Federal

Emergency Management Agency (FEMA) September 2015

Summary of Contents

Section 1: Overview	1-1
Section 2: Acquisition	2-1
Section 3: Lidar Data Processing	3-3
Section 4: Flight Logs	4-1
Section 5: Final Deliverables	5-1

List of Figures

Figure 1.1: Lidar Task Order AOI and Base Station Locations1-	-2
Figure 2.1: Lidar Flight Layout, Ashland County Wisconsin Lidar2-	-2
Figure 3.1: Trajectory, Day 30514_SH7177	-2
Figure 3.2: Trajectory, Day30614_SH71773-	-3
Figure 3.3: Trajectory, Day 10715_ SH7108	-3
Figure 3.4: Combined Separation, Day 30514_SH71773-	-4
Figure 3.5: Combined Separation, Day 30614_SH71773-	-4
Figure 3.6: Combined Separation, Day 10715_SH71083-	-5
Figure 3.7: Estimated Positional Accuracy, Day 30514_SH71773-	-5
Figure 3.8: Estimated Positional Accuracy, Day 30614_SH71773-	-6
Figure 3.9: Estimated Positional Accuracy, Day 10715_SH71083-	-6
Figure 3.10: PDOP, Day 30514_SH7177	-7
Figure 3.11: PDOP, Day 30614_SH7177	-7
Figure 3.12: PDOP, Day 10715_SH7108	-8
Figure 3.13: Altitude, Day30514_SH7177	-8
Figure 3.14: Altitude, Day30614_SH7177	-9
Figure 3.15: Altitude, Day10715_SH7108	-9
Figure 3.16: Histogram Interswath Accuracy	0
Figure 3.17: Scan Angle Rank	1

List of Tables

Table 1.1: Sensor Specifications	1-1
Table 2.1: ALS Lidar System Specifications	2-1
Table 2.2: Airborne Lidar Acquisition Flight Summary	2-3
Table 3.1: GNSS Base Station	3-2

Section 1: Overview

Project Name: FEMA STARR ASHLAND COUNTY WISCONSIN LIDAR

Woolpert Project: #74908

This report contains a comprehensive outline of the FEMA STARR Ashland County Lidar task order. This task is issued under FEMA Task Order Number: HSFE05-14-J-0037, and STARR Project Number: 400000254. This task order requires lidar data to be acquired over Ashland County, Wisconsin. The total area of the Ashland County Lidar AOI is approximately 1,011 square miles. The lidar was collected and processed to meet a maximum Nominal Post Spacing (NPS) of 1 meter. The NPS assessment is made against single swath, first return data located within the geometrically usable center portion (typically ~90%) of each swath.

The data was collected using a Leica ALS70 500 kHz Multiple Pulses in Air (MPiA) lidar sensor. The ALS70 sensor collects up to four returns per pulse, as well as intensity data, for the first three returns. If a fourth return was captured, the system does not record an associated intensity value. The aerial lidar was collected at the following sensor specifications:

Table 1.1:

Sensor Specifications				
Post Spacing	3.3 ft / 1 m			
AGL (Above Ground Level) average flying height	7,800 ft / 2,377 m			
MSL (Mean Sea Level) average flying height	variable			
Average Ground Speed:	150 knots / 173 mph			
Field of View (full)	40 degrees			
Pulse Rate	230 kHz			
Scan Rate	34.4 Hz			
Side Lap	25%			

The lidar data was processed and projected in UTM, Zone 15, North American Datum of 1983 (2011) in units of meters. The vertical datum used for the task order was referenced to NAVD 1988, GEOID12A, in units of survey feet.

WOOLPERT

Figure 1.1: Lidar Task Order AOI and Base Station Locations

Section 2: Acquisition

The existing lidar data was acquired with a Leica ALS70 500 kHz Multiple Pulses in Air (MPiA) Lidar Sensor System, on board Woolpert Cessna aircraft. The ALS70 lidar system, developed by Leica Geosystems of Heerbrugg, Switzerland, includes the simultaneous first, intermediate and last pulse data capture module, the extended altitude range module, and the target signal intensity capture module. The system software is operated on an OC50 Operation Controller aboard the aircraft.

The ALS70 500 kHz Multiple Pulses in Air (MPiA) Lidar System has the following specifications:

ALS Lidar System Specific	ations					
Operating Altitude	200 – 3,500 meters					
Scan Angle	0 to 75° (variable)					
Swath Width	0 to 1.5 X altitude (variable)					
Scan Frequency	0 – 200 Hz (variable based on scan angle)					
Maximum Pulse Rate	500 kHz (Effective)					
Range Resolution	Better than 1 cm					
Elevation Accuracy	7 - 16 cm single shot (one standard deviation)					
Horizontal Accuracy	5 – 38 cm (one standard deviation)					
Number of Returns per Rulse	7 (infinite)					
Number of Intensities	3 (first second third)					
Intensity Digitization	8 bit intensity + 8 bit AGC (Automatic Gain Control) level					
MPiA (Multiple Pulses in Air)	8 bits @ 1nsec interval @ 50kHz					
Laser Beam Divergence	0.22 mrad @ 1/e ² (~0.15 mrad @ 1/e)					
Laser Classification	Class IV laser product (FDA CFR 21)					
Eye Safe Range	400m single shot depending on laser repetition rate					
Roll Stabilization	Automatic adaptive, range = 75 degrees minus current FOV					
Power Requirements	28 VDC @ 25A					
Operating Temperature	0-40°C					
Humidity	0-95% non-condensing					
Supported GNSS Receivers	Ashtech Z12, Trimble 7400, Novatel Millenium					

Table 2.1:

Prior to mobilizing to the project site, Woolpert flight crews coordinated with the necessary Air Traffic Control personnel to ensure airspace access.

Woolpert survey crews were onsite, operating a Global Navigation Satellite System (GNSS) Base Station for the airborne GPS support.

The lidar data was collected in three (3) separate missions, flown as close together as the weather permitted, to ensure consistent ground conditions across the project area.

An initial quality control process was performed immediately on the lidar data to review the data coverage, airborne GPS data, and trajectory solution. Any gaps found in the lidar data were relayed to the flight crew, and the area was re-flown.

FEMA STARR September 2015

Figure 2.1: Lidar Flight Layout, Ashland County Wisconsin Lidar

Date of Mission	Lines Flown	Mission Time (UTC) Wheels Up/ Wheels Down	Mission Time (Local = EDT) Wheels Up/ Wheels Down
November 1, 2014 – Sensor 7177	1-11, 14-25, 31-38	16:25 - 0:13	11:25AM – 07:13PM
November 2, 2014 - Sensor 7177	12-13,26-30,39-64	13:45 – 20:57	08:45AM - 03:57PM
April 17, 2015 – SH7108	49	13:35 - 17:25	08:35AM – 12:25PM

Table 2.2: Airborne Lidar Acquisition Flight Summary

Section 3: Lidar Data Processing

Applications and Work Flow Overview

- Resolved kinematic corrections for three subsystems: inertial measurement unit (IMU), sensor orientation information and airborne GPS data. Developed a blending post-processed aircraft position with attitude data using Kalman filtering technology or the smoothed best estimate trajectory (SBET).
 Software: POSPac Software v. 5.3, IPAS Pro v.1.35.
- Calculated laser point position by associating the SBET position to each laser point return time, scan angle, intensity, etc. Created raw laser point cloud data for the entire survey in LAS format. Automated line-to-line calibrations were then performed for system attitude parameters (pitch, roll, heading), mirror flex (scale) and GPS/IMU drift.
 Software: ALS Post Processing Software v.2.75 build #25, Proprietary Software, TerraMatch v. 14.01.
- 3. Imported processed LAS point cloud data into the task order tiles. Resulting data were classified as ground and non-ground points with additional filters created to meet the task order classification specifications. Statistical absolute accuracy was assessed via direct comparisons of ground classified points to ground RTK survey data. Based on the statistical analysis, the lidar data was then adjusted to reduce the vertical bias when compared to the survey ground control. **Software**: TerraScan v.14.011.
- The LAS files were evaluated through a series of manual QA/QC steps to eliminate remaining artifacts from the ground class.
 Software: TerraScan v.14.011.

Global Navigation Satellite System (GNSS) – Inertial Measurement Unit (IMU) Trajectory Processing

Equipment

Flight navigation during the lidar data acquisition mission is performed using IGI CCNS (Computer Controlled Navigation System). The pilots are skilled at maintaining their planned trajectory, while holding the aircraft steady and level. If atmospheric conditions are such that the trajectory, ground speed, roll, pitch and/or heading cannot be properly maintained, the mission is aborted until suitable conditions occur.

The aircraft are all configured with a NovAtel Millennium 12-channel, L1/L2 dual frequency Global Navigation Satellite System (GNSS) receivers collecting at 2 Hz.

All Woolpert aerial sensors are equipped with a Litton LN200 series Inertial Measurement Unit (IMU) operating at 200 Hz.

A base-station unit was mobilized for each acquisition mission where a CORS station was not utilized, and was operated by a member of the Woolpert acquisition team. Each base-station setup consisted of one Trimble 4000 – 5000 series dual frequency receiver, one Trimble Compact L1/L2 dual frequency antenna, one 2-meter fixed-height tripod, and essential battery power and cabling. Ground planes were used on the base-station antennas. Data was collected at 1 or 2 Hz.

The GNSS base station operated during the Lidar acquisition missions is listed below:

Station (Name)	Latitude (DMS)	Longitude (DMS)	Ellipsoid Height (L1 Phase center) (Meters)
MIIW CORS Base	46° 28' 12.86538"	-90°09' 56.56048"	420.172
PID RM0890	46° 33' 05.94204"	-90°54' 57.26501"	219.273

Table 3.1: GNSS Base Station

Data Processing

All airborne GNSS and IMU data was post-processed and quality controlled using Applanix MMS software. GNSS data was processed at a 1 and 2 Hz data capture rate and the IMU data was processed at 200 Hz.

Trajectory Quality

The GNSS Trajectory, along with high quality IMU data are key factors in determining the overall positional accuracy of the final sensor data. Within the trajectory processing, there are many factors that affect the overall quality, but the most indicative are the Combined Separation, the Estimated Positional Accuracy, and the Positional Dilution of Precision (PDOP).

Figure 3.1: Trajectory, Day 30514_SH7177

Figure 3.2: Trajectory, Day30614_SH7177

Figure 3.3: Trajectory, Day 10715_SH7108

Combination Separation

The Combined Separation is a measure of the difference between the forward run and the backward run solution of the trajectory. The Kalman filter is processed in both directions to remove the combined directional anomalies. In general, when these two solutions match closely, an optimally accurate reliable solution is achieved.

Woolpert's goal is to maintain a Combined Separation Difference of less than ten (10) centimeters. In most cases we achieve results below this threshold.

FEMA STARR September 2015

Figure 3.4: Combined Separation, Day 30514_SH7177

Figure 3.5: Combined Separation, Day 30614_SH7177

Figure 3.6: Combined Separation, Day 10715_SH7108

The Estimated Positional Accuracy plots the standard deviations of the east, north, and vertical directions along a time scale of the trajectory. It illustrates loss of satellite lock issues, as well as issues arising from long baselines, noise, and/or other atmospheric interference.

Woolpert's goal is to maintain an Estimated Positional Accuracy of less than ten (10) centimeters, often achieving results well below this threshold.

Figure 3.7: Estimated Positional Accuracy, Day 30514_SH7177

Figure 3.8: Estimated Positional Accuracy, Day 30614_SH7177

The PDOP measures the precision of the GPS solution in regards to the geometry of the satellites acquired and used for the solution.

Woolpert's goal is to maintain an average PDOP value below 3.0. Brief periods of PDOP over 3.0 are acceptable due to the calibration and control process if other metrics are within specification.

Figure 3.10: PDOP, Day 30514_SH7177

Figure 3.12: PDOP, Day 10715_SH7108

Figure 3.13: Altitude, Day30514_SH7177

Figure 3.14: Altitude, Day30614_SH7177

Lidar Data Processing

When the sensor calibration, data acquisition, and GPS processing phases were complete, the formal data reduction processes by Woolpert lidar specialists included:

- Processed individual flight lines to derive a raw "Point Cloud" LAS file. Matched overlapping flight lines, generated statistics for evaluation comparisons, and made the necessary adjustments to remove any residual systematic error.
- Calibrated LAS files were imported into the task order tiles and initially filtered to create a ground and non-ground class. Then additional classes were filtered as necessary to meet client specified classes.

- Once all project data was imported and classified, survey ground control data was imported and calculated for an accuracy assessment. As a QC measure, Woolpert has developed a routine to generate accuracy statistical reports by comparisons against the TIN and the DEM using surveyed ground control of higher accuracy. The lidar is adjusted accordingly to meet or exceed the vertical accuracy requirements.
- The lidar tiles were reviewed using a series of proprietary QA/QC procedures to ensure it fulfills the task order requirements. A portion of this requires a manual step to ensure anomalies have been removed from the ground class.
- The lidar LAS files are classified into the Default (Class 1), FGDC Compliant metadata was developed for the task order in .xml format for the final data products.
- The horizontal datum used for the task order was referenced to in UTM, Zone 15, North American Datum of 1983 (2011) in units of meters. The vertical datum used for the task order was referenced to NAVD 1988, GEOID12A, in units of survey feet.
- Relative vertical accuracy refers to the internal geometric quality of a lidar dataset, without regard to surveyed ground control. Overlap consistency (interswath) was tested at 20 locations all over the project area. Overlap consistency is a measure of geometric alignment of two overlapping swaths; the principles used with swaths can be applied to overlapping lifts and projects as well. Overlap consistency will be assessed at multiple locations within overlap in nonvegetated areas of only single returns. The overlap areas that will be tested are those between the following:

Adjacent, overlapping parallel swaths within a project,

Cross-tie swaths and the intersecting project swaths, and

Adjacent, overlapping lifts.

The average line to line difference was tested at -0.010 survey feet. The RMSDz of line to line difference is 0.162 survey feet. The number of samples is 189. The Frequency of relative vertical accuracy between flightlines is shown as following.

Figure 3.16: Histogram Interswath Accuracy

- This LAS 1.2 dataset contains return numbers beyond a 5th return(6th, 7th, 8th, etc). A fully compliant LAS 1.2 file only supports the encoding of up to and including 5 returns in the LAS header information. Any subsequent returns (6th, 7th, 8th, etc) cannot be encoded in the header and most lidar processing software will generate a warning stating "Number of points by return not equal point record count".
- The vertical scale factor of this lidar dataset is 0.01. The LAS generating software defaults the vertical scale factor to 0.001 so the Z-value of a lidar point at 50.53 ft is stored by the software as 50.530 ft. This is what is known as "fluff". There is nothing wrong with the data only that most lidar processing softwares are able to detect this "fluff" and display a warning.
- The scan angle rank in point data record is the angle at which the laser point was output from the laser system includes roll of the aircraft added by roll compensation. Due to the tiled nature of the LAS data, some LAS files may exhibit a lower scan angle rank than what the overall project was acquired at and/or contain only negative or positive scan angle ranks. This is due to the fact that when swath data is imported to a tiled format that tile assumes whatever scan angle rank values that fall within that tile boundary. See figure 3.17- Assuming that nadir of the swath falls roughly on the tile boundary it could be expected that tile 672152 might only contain negative scan angle ranks or have lower scan angle ranks than anticipated.

Figure 3.17: Scan Angle Rank

Section 4: Flight Logs

Flight logs for the project are shown on the following pages:

WOOLPERT

24	Woolpert													
Leica	LIDAR	11/1/2014	30514	74908		1		Achiand, Wi						
	COSMISS SALAMBOS		N2029E	2430.7		100110	23:00	16:25:00	65					
	Plict Senior Type HOBIS (ND Local End Time Zulu End Time							0						
	SWAIN		ALS-7177	3438.2		7:1	3:00	0:13:00	0890					
Wind D	r/Speed	Mubliky	Celling Cloud	Cover % Temp	Dew Point	a - 2	Breckure 30.44	Haze/Fire/Cloud	KASX					
Scan A	ngle (FOV)	Scan Frequen	ky (Hz) Pul	se Rate (kHz)	Laser Po	wer %	Fixed Gain	255 Me	Arriving KJ Mode Threshold					
1	40	34.4		230	10	0	Gain - Course/U	ip Single	Single A					
Air Speed		AGL	MSL		Waveform U	sed	Gain - Fine/Dow Waveforth Mode	m Multi	Pre-Tog	er Dist.				
19	50	ка 7800	Ft §	3400 Pt	Yes	No X		Ø	w¢.	Ft				
Line #	Dir.	Line Start Time	Line End Time	Time On Line	SV's	HDOP	PDOP	Line Not	es/Comments					
Test	n/a		8	n/a	n/a	n/a	n/a	GPS Began Logging At:	10	5:30:00				
		1 Times entered a	re zulu / GMI 1	10.00.10				Ventry 5-Turns Before Mis	SSIDDI WES	No				
1	N	16:53:53	16:56:06	10:08:10	17	0.7	1.2	Takeoff: 11:37 (L	16:37 z	las.				
2	3	10:58:34	17:09:36	0:00:00	18	0.7	1,1	conditions on the	e nilis simi	laf				
5	N C	17:14;55	17:29:15	0:00:00	17	0.7	1.1	to the condition	in wass th	at				
4	M	17:51:47	18:02:22	0:00:00	17	0.7	1.1	light dusting of a	bac woo	or o				
6	S	18:05:42	18:20:24	0:00:00	17	0.7	1.3	thick frost	now and/	<i>4</i> 0				
7	N	18:22:13	18:36:55	0:00:00	17	0.7	1	and a set						
8	5	18:39:22	18:54:28	0:00:00	17	0.7	1.1	DROPOUTS DUE	TO THE BA	Y				
9	N	18:56:22	19:11:17	0:00:00	18	0.6	1	and numerous po	onds					
10	S	19:13:40	19:28:44	0:00:00	16	0.6	1.2							
11	N	19:30:34	19:45:52	0:00:00	15	0.6	1.1	as we work east	it appears as					
14	N	19:47:16	19:49:23	0:00:00	17	0.6	1.1	the dusting of sn	ses					
15	S	19:51:40	20:10:40	0:00:00	15	0.6	1.2							
16	N	20:12:34	20:31:37	0:00:00	15	0.6	1.2							
17	S	20:33:52	20:53:20	0:00:00	17	0.7	1.1							
31	N	20:55:06	21:11:47	0:00:00	15	0.7	1.2							
18	N	21:13:12	21:14:43	0:00:00	17	0.6	1.2							
19	S	21:17:02	21:18:43	0:00:00	18	0.7	1.1							
32	S	20:20:14	21:36:42	0:00:00	18	0.7	1.3	s k		2				
33	N	21:38:30	21:54:55	0:00:00	17	0.7	1.1							
20	N	21:56:55	21:58:27	0:00:00	18	0.6	1.1	5 K.		2				
21	S	22:00:53	22:02:26	0:00:00	18	0.6	1.1			2				
34	5	22:04:40	22:21:09	0:00:00	18	0.6	1.1							
35	N	22:23:00	22:38:50	0:00:00	18	0.6	1.1							
22	N C	22:41:22	22:43:08	0:00:00	18	0.6	1.1							
36	5	22:45:42	22:47:34	0:00:00	18	0.6	1.1							
37	N	23:07:55	23:22:25	0:00:00	16	0.7	1.1							
24	N	23:27:29	23:28:12	0:00:00	16	0.7	1.3	Landing: 00:07:1	1					
25	5	23:31:12	23:37:35	0:00:00	16	0.7	1.3	Static: 00:11:20 -	00:13:20					
38	S	23:36:46	23:52:09	0:00:00	16	0.7	1.3	T						
↑ Times	entered	are Zulu / GMT 🛧	6	Pag	e	3		Verity S-Turns After Mis	sion Tes X	No				
Additional	Comments:		-							Drive #				

WOOLPERT

	Woolpert													
Leica	LIDAR	11/2/2014	306	74908		1		Ashland, WI						
	CORRECT		N2029E	2420.2	_	001130	5:00	1245-00		NGS				
	Pligt		enoor Type	HORES END		Local D	ad Time	Zulu End Time	ND					
20	SWAIN		ALS-7177	3445.1	63.01	3:57	7:00	20:57:00	10890					
Wind Di	r/Speed	10 Vability	Clear Cloud	Cover N Temp	Dew Poir	at a second s	30.13	Hate/Fire/Cloud	Hase/fire/Cloud Departing					
Scan A	ngle (FOV)	Scan Frequen	ky (Hz) Pul	se Rate (kHz)	Laser Pu	ower %	Fixed Gain	255 Mo	Arriving 255 Mode Thresh					
(40	34.4		230	10	00	Gain - Course/U	lp Single		A 170				
Air Speed	an 105 II.	AGL	MSL	2433802 24	Waveform U	lsed	Waveform Mode		Pre-Trig	ger Dist.				
15	50	кы 7800	R §	3400 Pt	Yes	No x		@	NS.	Ft				
Line #	Dir.	Line Start Time	Line End Time	Time On Line	s∨s	HDOP	PDOP	Line No	tes/Comments					
Test	n/a		1	n/a	n/a	n/a	n/a	GPS Began Logging At:	1	3:53:00				
	8800	 Innes enteres a 	re zulu / GMT ().		2552	15370		Venity S-Turns Benore M	BSIDIT YES X	No				
39	N	14:23:00	14:34:00	5:28:59	17	0.6	1.2	Takeoff: 13:59:3	0/ Fast be	ginning				
47	S	14:40:44	14:48:15	0:00:00	16	0.7	1.5	line 39 remain 1	2.5 miles v	wpts 25 -1				
46	N	14:50:14	14:56:45	0:00:00	15	0.7	1.5	fast beginning						
49	S	14:59:26	15:07:01	0:00:00	15	0.7	1.4							
54	N	15:10:13	15:16:54	0:00:00	16	0.7	1.2	wpts 15-7 clouds	5					
26	N	15:29:02	15:30:23	0:00:00	16	0.6	1.2	Dropouts due to	water					
2/	5	15:33:08	15:34;30	0:00:00	16	0.6	1.4	surrounding Isla	nds					
20	S	15:40:24	15:57:42	0:00:00	14	0.8	1.4	- 04 - C						
30	SW	15:44:48	15:49:43	0:00:00	15	0.7	1.4	+						
12	N	15:53:49	15:54:32	0:00:00	15	0.7	1	1						
13	S	15:58:27	16:00:32	0:00:00	18	0.6	1	-						
40	S	16:07:47	16:23:54	0:00:00	17	0.6	1	1						
41	N	16:26:02	16:41:05	0:00:00	17	0.6	1.5							
42	S	16:43:42	16:59:08	0:00:00	18	0.6	1.1							
43	N	17:01:03	17:15;50	0:00:00	18	0.6	1.1	53 AC						
44	S	17:18:16	17:23:00	0:00:00	19	0.6	1.1			2				
45	Ν	17:35;16	17:49:30	0:00:00	19	0.6	1.2							
39	N	17:55;58	18:02:41	0:00:00	16	0.7	1.5	Manu Strt UL 00	1 wpt 28 -	1				
48	S	18:13:10	18:19:42	0:00:00	18	0.6	1.1							
51	N	18:21:50	18:28:26	0:00:00	18	0.6	1							
50	S	18:30:46	18:37:20	0:00:00	17	0.6	1.1							
53	N	18:39:40	18:46;14	0:00:00	18	0.6	1							
52	S	18:48:30	18:55:00	0:00:00	19	0.6	0.9							
55	N	18:57:12	19:03:40	0:00:00	19	0.6	0.9							
54	N	19:06:40	19:08:52	0:00:00	15	0.7	1.2	PATCH JOB wpts	16- 6/UL	002				
50	5	19:11:20	19:15:49	0:00:00	15	0.7	1.2	+						
5/	N	19:18:09	19:22:37	0:00:00	15	0.7	1.2	-						
50	N	19:24:55	19:29:19	0:00:00	15	0.7	1.2	-						
60	S	19:38:30	19:43:00	0:00:00	17	0.7	1.2	SEE PAGE #2						
1 Times	entered	are Zulu / GMT A	201-00100	Pag	e		1	Verity S-Turns After Mi	ssion Tee y	No				
Additional	Comments:		<i>K</i> 1	. 05					Â	Drive #				
().														
										00096				

WOOLPERT

	Woolpert Page Name																	
Leic	a LIDAR	11/2/2014	6	74908				1					Ashland, WI					
CONTROL AND A					10000000				1000 2001 IIINA 5-15-00					13:45:00			Lana August	_
3	VIEX SERIOR TYPE PLOES CAU LISEE DIS TIME ZUD CRISTINE							NGS										
	SWAIN		ALS-7177		з	445.1		Į.		3:57	7:00		20:57:00 RM089					0
Wind D	ir/Speed	Viability 10	Celling	Cloud	Cover %	Temp	De	w Point			Pres	13	1	Haze/I	fire/Cloud	Depart	ing	KASX
Scan	Angle (FOV)	Scan Frequen	ICY (Hz)	Pul	se Rate (kHz)	-		aser Po	wer%		50	Fixed Gain		255	M	ode	16 Thresi	KDLH wold Values
	40	34.4			230			10	0		Gai	n - Course/	Up		Single		A	170
Air Speed	2900	AGL		MSL	-1455000		Wavef	orm Usi	ed	_	Wavefo	rm Mode	wn.	101030	Multo	Pro	-Trigger L	UGT .
1	50	кts 7800	Pt	8	3400	R	Yes		No	х				@		NS		Ft
Line #	Dir.	Line Start Time	Line End	Time	Time Or	Line	S	٧s	-	IDOP	201	PDOP			Line N	lotes/Comn	ents	
Test	n/a			- 23	n/a		n	/a	10	n/a		n/a	GP.	S Began Li	ogging At	<u>,</u>)	13:5	3:00
61	N	19:45:26	19:49:	52	15:49	:34	1	7	1.8	0.7	_	1.2	Ta	keoff:	15:59:3	dission lye	XIN	0
62	S	19:52:32	19:57:	02	0:00	:00	1	7	1 31	0.7	-	1.2	-					-
63	N	19:59:43	20:04:	13	0:00	:00	1	7	8	0.7		1.2						
64	S	20:07:22	20:10:	11	0:00	00	1	.6	(2)	0.7		1.2	╈					
					0:00:	00							0	VERFLY	BASES	TATION	1	
				Ĵ	0:00:	:00							20	:27:15	ended	20:29:4	5	
_					0:00:	:00							La	nding	at DLH :	2050z/3	:50 pm	n (L)
					0:00:	:00		_										
_					0:00:00		_	_					_					
				23					-									
					0:00:		_		_	_		-						
				- 3	0:00:00			_		_			1					
				- 3	0:00:	:00	L	-	-	_	_		-					
			2	- 3	0:00:	:00	-	-	-	_	-		+					_
_					0:00:	00	-	_	-		_		-					
-	_			- 8	0:00:00			-	-	-	_		-					-
			-	53	0.00	00	-	-	-		-		-					_
3				- 53	0:00:00						·		-					
-					0:00:	00	-			_	_							_
				10	0:00:	:00		-	t									
				10	0:00	:00			1									
				1	0:00:	:00												
					0:00:	:00												
					0:00:	:00												
					0:00:	00												
					0:00:	:00		_										
				10	0:00:	:00	_	_	-		_		_					
_	_				0:00:	:00	—	-	-	_	—		_					_
2			2	2)	0:00:	00	_	_	-				-					
				2	0:00:	Der		_	-						No de ou	1		8
T IImes	Comments:	are Zuiù / GMT 个				Pag	e				2	_	Ve	nry S-Tu	ous Arter M	nission Ye	N	o rive #
	-																	

WOOLPERT

			WC	OOLP	ERT F	LIGHT	LOG	SHE	ET #1					
	Leic	a ALS-	70	4/17/2015			fYear)7		Mission Name/Job# Marinette CO 74908					
Operator Pilot		Annen Voris		Aircr N475RC N404CP N7079F N475CP N1107Q	Aircraft Sensor 1475AC 5H-7177 1404CP 5H-7177 17079F 5H-6157 14107Q X			bbbs Start 2660 obbs End 669.5	ەما ئەما	al Start Time 8:35 al End Time 2:25	21	lu Start Time 13:35 ulu End Time 17:25		
Passengers	2			U	tang or Relying o	n CORS	GPS Base	at Ope	rator An	nen	PID	KMNM		
	15 BS			Yes	'	40 X	GPS Base	#2 Ope	erator CC	DRS	PID	MIIW		
Wind Dir/S	peed 0/5	Visibility 10	6-9k	Variou	JS 12	Dew Point 4	Press	30.08	Haze/Fire/	Cloud	Departing ICA Arriving ICA	O KMNM		
stan Angle	(HON) 40	Scan Frequ	аенсу (на) 34	Puise Rate (K 2	на) 130	Laser Power %)	Gain Course/ Fine/Do	'Up wm	Mode Single Multi		2+2		
Air Speed	150	AGL	8,300 _R	MSL 8,	300 R	Threshold /		Waveform	Mode		Pre-Trigg	er Dist. Pt		
Line #	Dir.	Line Start Ti	me Line E	nd Time	Time On Lin	e SV's	HDOP	PDOP		Line Not	tes/Comments			
Test	n/a		3		n/a	n/a	n/a	n/a	GPS Be	gan Logging A	NE:			
		‡ Times e	entered are Zulu / G	IMT ‡		•			Verity S-Turns	Before Missi	on Yes X	No		
34	Ν	14:02:0	00 14:1	12:00		16	0.6	1.1	Aba	ndon lin	e, 20 FNE	clouds		
		Moved	to Ash	land	Re-fligh	t	1 1			HS: 266	6.4 @ 9:1	5		
49	S	15:12:0	00 15:1	13:00			s3			HE: 266	7.6 @10:3	10		
0		Back to	Marin	ette CO										
9	N	15.56.0	10 16:1	9.00					Aband	on line	10 NM EN	E Clouds		
33	N	16:43:0	0 17:0	2:00		142	6 - A1	Abandon line, 10 NM FNE Clouds						
									Cloud	ls movin	g into ent	ire area		
			24 27	20										
-		75		-			e - 97	2						
			22 22 24			1	1 1	i i						
			24 	9		.0		Î						
			14 14				1 1							
			8	3			s – 72	3						
-		7.0				-	27 - 22							
-			8.5				n - 28							
						l.								
			10 12			N. Y	1							
	-													
			82	0		2								
			internet are being to		0.00.01		ni Tara G		Marine C.T.	· Albert Marth				
Additional	Comments:	Times	envereo are Zulu / G	MIT	0:00:00	То	ar time on I		venity S-Turn	s Arter Missio		Drive #		
				3	ystem worked w	ell, no issues.						material Fr		

Section 5: Final Deliverables

The final lidar deliverables are listed below.

- LAS v1.2 unclassified point cloud.
- FGDC compliant project level metadata in XML format
- Post-flight aerial acquisition and calibration report
- Lidar certificate of compliance